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Abstract 
 
This paper arose from a desire to include some sort of allowance for non-financial risk in a 
market consistent valuation.  This desire led to a review of some literature that showed there 
were features of valuation techniques already used by actuaries that, if looked at in a slightly 
different way, could have a wide range of practical applications, including deriving the cost of 
any type and shape of risk.  The purpose of this paper is to put down a broad description for 
deriving this cost of risk. 
  
This paper describes an approach for valuing any set of future uncertain profits by looking at 
cost of risk already implicit in the value of financial assets traded in capital markets. 
 
To be useful for enterprise risk management purposes and, arguably, published corporate 
value measures, the approach needs to include all sources of risk, not just financial risk.  It 
needs to handle all shapes of profit distributions, both symmetrical and non-symmetrical, and 
it needs to value any financial risk consistently with observable market values for similar 
risks. 
 
Overall, we want to derive a set of stochastic discount factors “m” such that, for any uncertain 
future outcome Z, the present value of Z = Σm.z.P(z), where P(z) is a real world distribution.  
In other words, value is real world expected value of mZ. 
 
Stochastic discount factors have a number of applications and contain useful information: 
• They explain the risk aversion inherent in the value of financial assets 
• They can convert any uncertain future outcome into a risk adjusted value 
• Under simple assumptions, they can derive a cost of capital and can recover the Black 

Scholes pricing formula 
 
Not withstanding these strengths, there are limitations that need to be understood before these 
factors can be applied in all circumstances. 
 
 
Key words: risk aversion;  stochastic discount factors;  market consistent values; non-
financial risk 
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1 Introduction 

1.1 The desire 
 
This paper arose from a desire to include some sort of allowance for non-financial risk in a 
market consistent valuation.  This desire led to a review of a range of literature that showed 
there were features of valuation techniques already used by actuaries that, if looked at in a 
slightly different way, could have a wide range of practical applications, including deriving 
the cost of any type and shape of risk.  The purpose of this paper is to put down a broad 
description for deriving this cost of risk. 
 
The references gives examples of this literature and nearly all can be downloaded free of 
charge from the internet.   
 
1.2 Purpose 
 
This paper describes an approach for valuing any set of future uncertain profits by looking at 
cost of risk already implicit in the value of financial assets traded in the capital markets. 
 
This could provide a useful benchmark for internal management purposes, where not all risk 
is diversifiable in the capital markets, and any residual risks can still cause the same practical 
issues as a financial risk.  It may also help explain the difference between a pure market 
consistent value of a financial services company and its market capitalisation. 
 
1.3 Structure 
 
Section 2 sets out the goal for this paper.  This goal is to find a general formula for finding the 
risk adjusted value of a set of future profits.  To be useful for internal management purposes, 
this formula needs to consider risks from all sources.   
 
A key constraint is that the approach needs to give a market consistent value when applied to 
financial risks.  Therefore, a starting point is to look at whether a general formula can be 
applied for financial risks. 
 
Section 3 explains market consistent values and how they allow for risk.  This section shows 
that the process can be explained in terms of stochastic discount factors. 
 
Section 4 explains how stochastic discount factors relate to utility theory and how they can be 
described in terms of risk aversion. 
 
Section 5 describes what it would take to apply these stochastic discount factors to all risks. 
 
Section 6 shows how stochastic discount factors can work for different profit distributions and 
how a risk adjusted distribution can be derived. 
 
Section 7 briefly comments on some practical applications. 
 
Section 8 outlines why the approach described in this paper may not work for all occasions. 
 
The appendices contain additional, more technical information to support some of the 
analysis. 
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2 Goal 

2.1 The goal 
 
The goal of this paper is propose a general approach for deriving a risk adjusted value for any 
set of uncertain future profits. 
 
The overall criteria for the approach are: 
• it needs to produce a risk adjusted value; the higher the risk the lower the value (all other 

things being equal) 
• it must be applicable for all shapes of profit distributions.  It needs to handle both 

symmetrical and non-symmetrical risk 
• it needs to be useful for enterprise risk management purposes.  As a result, it needs to 

include all sources of risk 
• the value of any financial risk needs to be consistent with observable market values for 

similar risks 
• it needs to be explainable and comparable in fairly general terms 
 
2.2 The formula 
 
Suppose we have an uncertain future profit stream.  Assume that we can derive a model for: 
• Z, the future profit stream 
• P(z), the probability that the profit will be some value z 
 
Overall, we want to derive a set of factors “m” such that: 
 
Value = Σm.z.P(z)    
 
That is, we want to know how we can adjust the range of possible future profits to get a risk 
adjusted value.  In this formula, “m” is some set of a stochastic discount factors.  Importantly, 
the stochastic discount factors may vary for different levels of profit.   
 
This formula is the same as saying “value equals the expected value of mZ”. 
 
A starting point is looking at the constraint that the general formula needs to return a market 
consistent value for financial risks.    This is described in the next section. 
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3 Financial risks and market consistent values 

3.1 Market consistent values 
 
Any general formula needs to return a market consistent value for financial risks. 
 
Market consistent values (MCVs) may be calculated for a set of cashflows by finding the 
value of a market portfolio that replicates the cashflows under all market conditions. 
 
This may be achieved by using risk neutral assumptions for investment returns.     For more 
details on market consistent values, see: 
• Jarvis, Southall and Varnell (2001), Modern Valuation Techniques 
• Blight, Kapel and Bice (2003), Market Consistent Economic Valuations for Wealth 

Management Companies 
 
3.2 Risk neutral approach for financial risks 
 
This paper will take a simplified approach to describing the risk neutral approach for financial 
risks.  In particular:  
• the market contains only one asset class.  For simplicity, we will assume that local 

equities are sufficient to explain the risk aversion of investors 
• X is the future level of the market 
• X is a continuous variable.  This isn’t strictly necessary but may make the formulae 

easier  
• the risk free rate is constant and observable, and the risk free discount factor is v, where 

v = 1/(1+ the risk free rate) 
 
Suppose that we wish to value a set of profits where: 
Z =  the range of future profits 
V  =  value of the replicating portfolio for these profits 
x =  the future level of the market 
Zx =  the profit when the market is at x 
 
MCVs work by finding some factor “Q” that we can apply to different future profits, then 
discount at the risk free rate.   The risk adjusted value is then the sum of all these across all 
possible cashflows. 
 
That is, they use some function Q(x) such that .  ∫= vQ(x)dxxZ V

 
For this formula to work, vQ(x)dx needs to be the value of an asset that pays 1 when the 
market is between x and x + dx, and zero at all other times.  Appendix 1 shows how such an 
asset can be constructed using options (in theory). 
 
In 1978, Breeden and Litzenberger showed that vQ(x) can be derived from taking the second 
derivative of an option price curve with respect to the strike price.  Appendix 1 goes on to 
show this is more detail.   
 
Since it can be derived from the price of traded options, any two market practitioners should 
derive a similar for Q.   
 
Q(x) is known as a risk neutral distribution as it is already risk adjusted.  No further allowance 
for risk is required and any discounting can be at the risk free rate.   
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Black Scholes is a good example of a valuation function that uses a risk neutral distribution.  
Appendix 3 shows that the risk neutral distribution underlying Black Scholes for the future 
share price, Xt, is lognormal with E(ln(Xt)) =  r - 0.5σ2, and the standard deviation of ln(Xt) is 
σ, where r is the risk free rate and σ is the standard deviation of real world distribution of 
ln(Xt). 
 
3.3 Real world distributions for financial risks 
 
While we only need to know Q(x) to value a set of profits for a financial risk, we can still 
derive a set of stochastic discount factors to apply to a real world distribution. 
 
Let P(x) be the real world distribution for the future level of the market.  It measures the 
probability density function for the level of market.   
 
Deriving P is not as straight forward as deriving Q as it cannot be directly based on currently 
observable market prices.  P can vary from simple models to complex time series analyses, 
and it is unlikely that any two professionals will develop precisely the same parameters or 
even model.  (The literature often refers to the real world probability as “subjective” as it 
depends upon the view of the modeller, and the risk neutral distribution as “objective” as it 
can be derived from market prices.) 
 
Despite this complexity, this paper will assume that it is possible to model the market’s view 
for the real world distribution P(x).  
 
3.4 Stochastic discount factors 
 
If we can derive a market view for P(x) then we can derive the stochastic discount factors for 
financial risks to apply to the real world distribution. 
 
That is, if for a financial risk 
V  =  the market consistent value of a set of cashflows 
P   =  market’s view of the real world distribution  
 
We want to find some factor mx such that  ∫= P(x)dxmZV xx

 
That is, mx is some weight to apply to each level of cashflow and get the average using the 
real world distribution. 
 
Importantly, m is different for different future states of the market, and is linked through Q 
and P. 
 
If  and    ∫= vQ(x)dxZV x ∫= P(x)dxmZV xx

then a solution is  P(x)m  vQ(x) x=
 
So, for financial risks 

mx = Stochastic discount factor = v
P(x)
Q(x) , where “x” is the future level of market 

 
This could be interpreted as “remove P and put in Q and discount at the risk free rate”. 
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By itself, this is not necessarily that useful for valuing a financial risk.  If we know Q, we 
should just use this function to value the profit in the first place. 
 
However, mx is important in explaining how the risk is valued.   
 
3.5 P, Q and the modern actuary 
 
Actuaries are well placed for using P and Q. 
 
P, the real world probability, has been used for many years and is used for enterprise risk 
management, including target surplus and risk based capital. 
 
Q is used for the valuation and pricing of financial contracts, especially those with an 
asymmetric profit distribution that varies with the level of the market.  Prime examples are 
put and call options, including options imbedded into financial services products.   
 
The risk management of guaranteed products with implicit or explicit options use both P and 
Q.  The P probability is used to get a range of possible outcomes, and Q is used to derive the 
value of the guarantee within each outcome.  These are known as “stochastic within 
stochastic” projections. 
 
Many actuaries may be using P and Q, but not be aware of the useful information that links 
them.  In some cases, mx may be a neat equation if both P and Q have a similar functional 
form.   
 
(The choice of P and Q for these functions is a little unfortunate for life insurance actuaries, 
who are used to p and q relating to mortality rates.  These, however, have become the 
standard symbols across the literature.) 
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4 Stochastic discount factors, utility theory and risk aversion 

4.1 Utility theory 
 
To understand stochastic discount factors, it is worth going back to one of the cornerstones of 
economics, utility theory. 
 
Utility theory is a well known concept, but it is worth covering some of the key principles.   
 
Shuttleworth (1988) says utility theory “[attempts] to assign a relative value, or utility, to 
different levels of wealth”.  In simple terms, there is a function U(w) of wealth that measures 
utility where, for a risk adverse investor: 
•  0  (x)U' >

•  0  (x)'U' <
 
That is, utility increases with increasing wealth, but at a decreasing rate.  (Put another way, 
the pain from losing a dollar is greater than the joy from gaining a dollar.) 
 
Jarvis et al (2003) shows an important link between stochastic discount factors and utility 
theory.  (Their paper refers to stochastic discount factors as “state price deflators”, but this is a 
less common term.) 
 
For financial risks, stochastic discount factors are proportional to the marginal utility of the 
optimal market portfolio. 
 
This is an important relationship and provides the connection to a wider application of 
stochastic discount factors. 
 
Many of the principles of utility theory can therefore be seen in the properties of the 
stochastic discount factors. 
 
4.2 Examples of stochastic discount factors for financial markets 
 
To see the properties of stochastic discount factors for financial markets, assume a simple 
functional form for P and Q  
• Both P and Q are lognormal 
• Risk free rate = 6% pa 
• Expected return on shares = 9% 
• Volatility = 20%  
 
The following table shows the parameters for P and Q.   
 
Function Type of 

distribution 
μ σ 

Mean = 2

2σμ+
e  

P Log normal 6.618% 20% 1.09 
Q Log normal 3.827% 20% 1.06 
 
The following graph shows each distribution. 
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Graph 4.1: Risk neutral (Q) and real world (P) distributions 
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Graph 4.2 below shows the resulting stochastic discount factor.  This is simply the ratio of Q 
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Graph 4.2: Stochastic discount factors for different market levels  
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A formula can be derived for the above stochastic discount factors. 
 
If, 
• P is a lognormal distribution with parameters μ and σ 
• Q is a lognormal distribution with parameters μ* and σ (the same sigma as P) 
 

mx = 
[ ] ⎥

⎦

⎤
⎢
⎣

⎡ +
−

− 0.5λ
σ

μ)(ln(x)λ
ve     

 

where  
σ
μ*)(μλ −

=     

A proof is provided in the appendix. 
 
4.3 Properties of stochastic discount factors 
 
If the market is risk adverse, the properties of stochastic discount factors are: 
• They should always be positive but downwards sloping 
• More weight is given when the market level is low 
• Less weight is given when the market level is high 
• The average value (using the real world probability) of mx is v.   

 
The relationship with marginal utility helps explain the shape of stochastic discount factors.  
The stochastic discount factors give more weight to when the investor is desperate for money 
(in low markets) and less weight when the investor is flush with money (high scenarios). 
 
This is still the same as the pain from losing a dollar is greater than the joy from gaining a 
dollar. 
 
4.4 Risk aversion and utility functions 
 
The key property of utility curves is not the absolute level but rather their shape.  As 
mentioned above, the key requirements for utility functions are the first and second 
derivatives.  A better measure of utility is to look at the curvature of the marginal utility, 
rather than the absolute level.  (This would also mean that a good way of understanding 
stochastic discount factors is to look at their curvature.) 
 
The most well known measures of this curvature for marginal utility were introduced by John 
Pratt (1964) and Kenneth Arrow (1965): absolute risk aversion and relative risk aversion. 
 

Absolute risk aversion (ARA):  
(x)U'
(x)'U'

−   (or =
m(x)

(x)m'
− , since m is proportional to ) U'

Relative risk aversion (RRA): 
(x)U'
(x)'U'

− x (or =
m(x)

(x)m'
− x) 

 
More details on risk aversion are given in Appendix 2.   
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In our simple model, m(x) = 
⎥⎦
⎤

⎢⎣
⎡ +

−
− 0.5λ

σ
μ)(ln(x)λ

ve    
 

⎥
⎦

⎤
⎢
⎣

⎡ +
−

−
=

0.5λ
σ

μ)(ln(x)λ
.ve

σx
λ-  (x)m'  = .m(x)

σx
λ

−  

 
So 

Absolute risk aversion = 
σx
λ

m(x)
(x)m'

=−  

Relative risk aversion = 
σ
λ.x

m(x)
(x)m'

=−  

 
Therefore, this simple model, which underpins Black Scholes, assumes constant relative risk 
aversion. 
 
The λ/σ ratio is often referred to as the co-efficient of relative risk aversion.  λ is the Sharpe 
ratio: the risk premium (μ - μ*) divided by the standard deviationσ.  The co-efficient of 
relative risk aversion is therefore the risk premium divided by the variance. 
 
In our example,  
μ 6.618%  
μ* 3.827%  
σ 20%  

λ 14.0% 
2.0

0383.00662.0
σ
μ*)(μλ −

=
−

=

σ
λ  69.8% 20.2

0.0383 - 0.0662or       
0.2

0.14  

 
So, in this case, the co-efficient of relative risk aversion is 69.8%. 

If there is constant relative risk aversion, the utility curve takes the form U(x) = σ
λ1

x

σ
λ1

1ξ
−

−
, 

where ξ is some constant. 
 
Knowing “m” is helpful for explaining the risk aversion implied in the value of financial 
assets.  The next section looks at whether we can apply this risk aversion more generally to all 
risks. 
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5 Applying the method to all risks 

5.1 Market consistent values and non-financial risks 
 
Non-financial risks can be defined as any risk that cannot be replicated using financial 
instruments.  In lay terms, it is any risk that is not directly related to financial markets.  It 
includes: 
• some product related risks such as mortality risk and surrender risk 
• operational risks such as losses from failures in processes, such as unit pricing errors 
 
Unfortunately we can’t apply a pure MCV approach to non-financial risks. 
 
A pure MCV approach effectively assumes that non-financial risks are risk free as there is no 
portfolio that can replicate the cashflows.  This is consistent with financial economic theory 
that says that since these risks are not correlated with financial markets, shareholders can 
reduce this cost to zero by investing in a well diversified portfolio of companies.  (Many 
economists have demonstrated the practical difficulties in diversifying both financial and non-
financial risk, such as limits in short selling.) 
 
 
However, as outlined below, there are a number of reasons why there should be some 
allowance for non-financial risks in a useful value measure.  Some financial services 
companies around the world have made attempts to include a margin for non-financial risk in 
their published MCVs, but there is no general agreement on a uniform approach. 
 
5.2 Enterprise risk management 
 
Only taking into account financial risk may limit the usefulness of pure MCVs for enterprise 
risk management (ERM). 
 
The Casualty Actuarial Society defines ERM as “the process by which organizations in all 
industries assess, control, exploit, finance, and monitor risks from all sources for the purpose 
of increasing the organization’s short and long term value to its stakeholders.” 
 
There are a number of points to make with this definition: 
• risk is from all sources, not just financial risk 
• the key purpose is to increase value.  Any value measure should therefore look at risk 

from all sources.   
• the value is to stakeholders and not just shareholders.  Some stakeholders, such as 

management and regulators to name two, are interested in the impact from of all risks 
• managing risk appropriately can add value to an enterprise 
 
Therefore, as part of an ERM framework, it seems reasonable to include some allowance in 
the value for non-financial risk. 
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5.3 MCVs and market capitalisation 
 
One criticism of pure MCVs is that they overstate market capitalisations for financial services 
companies.  This is generally accepted in Australia and in other countries as well. 
 
The difference between MCV and the market capitalisation is attributed to “frictional costs” 
or “agency costs”.  Profit volatility from non-financial risks may be a direct or indirect driver 
of these costs.  Reasons for this include: 
• management unit costs may increase from the best estimate level if profits are low (e.g. 

one-off corporate restructuring costs) and also if profits are high (e.g. softer cost 
controls) 

• higher profit volatility makes it more difficult to manage an entity.  Strategic plans are 
more difficult to prepare, implement and achieve in an unstable environment.  Therefore, 
any increase in profit volatility can make it more difficult to create value   

• market analysts mark down company valuations if they cannot accurately forecast profit, 
even if the volatility is due to non-financial risks 

• the market capitalisation of a company typically falls if dividends fall, even if the fall in 
the dividend is a result of non-financial risk 

• companies need to hold capital for non-financial risks and need to raise additional capital 
if non-financial risks cause solvency issues.  It is reasonable that all capital comes at a 
cost 

• management policies, goals and remuneration are typically based on company profit 
from all sources.  Therefore management considers any company wide risk when making 
business decisions   

• management do not consider any diversification benefits with other companies that 
shareholder may be invested in.  In practice, management has limited diversification 
opportunities and still must consider any residual risks   

 
Therefore, it seems reasonable to allow for non-financial risks in some way, either as part of 
an internal ERM framework or even as part of published enterprise value. 
 
5.4 Deriving company specific stochastic discount factors 
 
As we can’t construct a replicating portfolio for non-financial risks, and we can’t observe a 
nice neat risk neutral function for these risks, we need to apply some sort of risk aversion to 
their real world distribution. 
 
The question becomes what form of risk aversion to use.  One approach is to derive a 
company specific risk aversion function from the company risk preferences.  In practice, this 
may be difficult. 
 
An objective alternative is to use the risk aversion already implicit in the value of financial 
risks and assume this is the company’s risk aversion.  Applying market implied risk aversion 
to all the company’s risks serves as a (somewhat) observable method that benchmarks the cost 
of risk against some external measure. 
 
However, the company risk aversion still needs to relate to the company’s utility.  For this to 
work, the company’s utility needs to be a function of the company’s profit (and not a function 
of the level of the market).   
 
To have the same risk aversion as the market, the shape of the company’s utility curve needs 
to be the same the market’s utility curve but aligned with company profit. 
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We can achieve this through appropriately constructed stochastic discount factors.  We would 
require stochastic discount factors that: 
• are positive 
• are highest when the profit is lowest 
• are lowest when the profit is highest 
• have the same shape as the stochastic discount factors for financial risks 
 
To achieve this, we can use the same values for mx but just reorder then so that they are 
aligned with the driver of company utility.  That is, they need to be aligned with company 
profit and not the level of the market. 
 
As a first step, we need to convert the market based stochastic discount factors so that they 
relate to a percentile outcome, rather than the level of the market. 
 
Graph 5.1 shows the stochastic discount factors for each percentile of the market, rather than 
the market level.  These can then be used as the stochastic discount factors for the company 
profit percentiles.   These factors in this graph are based on the simple model outlined in 
Section 4.2. 
 

Graph 5.1: Stochastic discount factors for different percentiles  
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In this case, the function form is m(p) = [ ][ ]0.5λCλ pve +−     
where  
• p is a the percentile corresponding to a level of profit 
• m(p) is the stochastic discount rate for the percentile p 

• Cp is the inverse standard normal variable with a probability of p, (
σ

μln(x)Cp
−

= ) 

 
We can now apply these factors to a company profit to get a risk adjusted value.  The next 
section shows that we can now transform a real world distribution to derive a risk adjusted 
value. 
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6 Impact of stochastic discount factors 

6.1 A shift to the left 
 
Assuming a positive risk aversion, stochastic discount factors effectively distort a profit 
distribution by giving more weight to the lower profits and less weight to the better outcomes.  
 
Therefore, stochastic discount factors effectively shift a distribution to the left (provided 
profits are positive and losses are negative).  This makes the risk adjusted value always less 
than mean by some margin (the “cost of risk”).  The shift is larger when the difference 
between the downside outcomes and the upside outcomes is larger.   
 
It can be helpful to look at what would be the risk adjusted variable before we discount it at 
the risk free rate.   That is, what if we apply the Q/P ratio and do the discounting separately.   
 
The graphs below show what happens to a variable if we apply these factors.  Two examples 
are given: a normally distributed profit and a skewed profit.  Note that in both cases, the 
distribution is shifted to the left.  The mean of the risk adjusted distribution can then be 
discounted at the risk free rate to derive a risk adjusted present value. 
 

Graph 6.1: Examples of risk adjusted distributions 
 

Normal case Asymmetric case 

‐0.5 0.0 0.5 1.0

Profit (loss)  
-0.5 0 0.5 1

Profit (loss)  
Apply factors Apply factors 
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Risk adjusted Real world  

-0.5 0 0.5 1

Profit (loss)Risk adjusted Real world

Mean 
Real world 0.264 
Risk adjusted 0.239 

Mean 
Real world 0.264 
Risk adjusted 0.243 

 
It is important to note that the new distribution cannot be used for understanding the 
likelihood of a particular event.  They can only be used for value measures. 
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7 Applications 

Stochastic discount factors and their effects on profit profiles have a number of applications.  
They can be applied to any uncertain future outcome to derive a risk adjusted value.  (A key 
assumption, however, is there the robust model for the variable being valued.) 
 
Some of the applications are touched on below. 
 
7.1 Risk adjusted values  
 
The approach can be used to determine a risk adjusted value for any risk profile.  
Furthermore, the cost of the risk is the consistent for financial and non-financial risks.   
 
In simple formula terms, value = E(mZ) where Z is a random variable for the risk and m is the 
stochastic discount factors based on the risk aversion implied by the market’s view of P and 
Q. 
 
This value can then be used to derive a risk measure, namely the difference between the 
mean, discounted at the risk free rate, and the risk adjusted value. 
 
In formula terms: 
 
PV of cost of risk = vE(Z) – E(mZ) 
 
where Z is a random variable for the risk and v is the risk free discount factor  
 
There are a number of advantages in using this formula as a measure of the cost of risk.  In 
particular: 
• it can apply for any shaped distribution.  Using standard deviation as a risk measure 

really only applies for normally distributed risks 
• it takes into account the whole distribution, including both the upside and downside.  

Many risk measures such as VaR and Tail VaR only consider the downside 
• it takes into account risk aversion, and the risk aversion does not need to take any 

particular form.  Some risk measures, such as the “Wang Transform”, effectively assume 
a constant relative risk aversion (see Wang 2000 and Wang 2002). 

 
The following table shows the cost of risk for the examples in Section 6.1. 
 

Table 7.1: Risk adjusted values form normal and skewed examples 
 

 Normal Skewed  
Best estimate profit 0.264 0.264 a 
PV at risk free rate 0.249 0.249 b = a / (1 + risk free rate) 
    
Risk adjusted mean 0.239 0.243 c 
PV at risk free rate 0.225 0.230 d = c / (1 + risk free rate) 
    
Cost of risk 0.025 0.021 e = a -c 
PV of cost of risk 0.024 0.020 f = d - b 
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7.2 Risk adjusted values under simplified assumptions 
 
Under simplified assumptions, stochastic discount factors can give a simple risk adjustment.   
 
If mp = [ ]0.5λCλ pve +−  then for a normally distributed random variable, the risk adjusted random 
variable is also normally distributed with the same standard deviation but the mean is shifted.  
The following table shows the new parameters. 
 
If Z is normally distributed 
 Real world Risk 

adjusted 
Comment 

Mean α α – βλ Shifted by βλ 
Standard deviation β β Unchanged 

Where 
σ
μ*)(μλ −

= , using the parameters for the lognormal distribution for P and Q. 

 
A proof is given in the appendix.   
 
In this case, there is no need to do a full projection to get the risk adjusted value.  Since value 
depends upon the mean of the risk adjusted distribution, all you need to know is the real world 
mean and then subtract λ * standard deviation.  This is a much simpler approach than doing a 
full projection (and is not new, as it is effectively a restatement of the Sharpe ratio).   
 
Consider the following example 
 
μ 6.618%  
μ* 3.827%  
σ 20%  

λ 14.0% 
σ
μ*)(μλ −

=  

 
Consider a profit stream with  
• expected profit: 0.264 
• standard deviation: 0.180 
 
(These are the parameters for the normal example in Section 6.1.) 
 
The risk adjusted profit is 0.264 – λ * 0.180 
= 0.264 – 0.14* 0.180 
= 0.264 – 0.025 
= 0.239 
 
The present value at the risk free rate is 0.239 / 1.06 = 0.225. 
 
7.3 Cost of capital 
 
Under simplified assumptions, stochastic discount factors can give the cost of capital.   
 
If Z is normally distributed then risk based capital is a multiple of the standard deviation.  
Assuming we know the risk of ruin, we can replace standard deviation from the previous 
section with risk based capital.  The λ factor needs to be rescaled but this is straight forward.  
It just needs to be divided by the number of standard deviations implied by the risk of ruin. 
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If the risk of ruin is 0.5% then the risk based capital has 2.58 standard deviations. The cost of 
risk based capital is then λ * 2.58 or 5.43%. 
 
Using the numbers from the previous normally distributed example, the risk based capital is 
0.463 for a one year projection (0.463= 2.58 * standard deviation = 2.58 * 0.180).  For 
simplicity, assume the capital is only required at the end of the year. 
 
The risk adjusted value is then 
• The best estimate average profit  
• Less the risk based capital times 5.43% 
• Then discount at the risk free rate 
 
In our example for a normally distributed risk: 
The best estimate average profit  0.264 
Less the risk based capital times 5.43% 0.483 * 5.43% 

=0.025 
Risk adjusted value 0.264 – 0.025 

= 0.239 
Discounted at risk free rate 0.239 / 1.06 

= 0.225 
 
This gives a simple rule for the cost of capital and can be used in a deterministic projection. 
 
This approach has been used for many years but it is worth knowing the assumptions that 
underpin it.  It assumes: 
• the cashflow Z is normally distributed.  It does not work for skewed cashflows 
• we know the number of standard deviations in the risk-based capital measure (that is, we 

know the risk of ruin) 
• both the real world and risk neutral distributions are lognormal with known parameters 

(or, more precisely, there is constant relative risk aversion with a known coefficient) 
 
If any of these assumptions don’t hold then it is likely that a projection using the full range of 
stochastic discount factors would be required.  In particular, the assumption that all risks are 
normal may not hold up in practice.  Also, there is nothing to say that the risk aversion for 
financial risks is always constant. 
 
The skewed example from Section 6.1 shows the limitations of just using capital as a measure 
of risk.  The following table shows the cost of the risk compared to the standard deviation and 
the capital for the normal example and the skewed example. 
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Table 7.2: Cost of risk as a percentage of standard deviation and capital 

 
 Normal Skewed  
Cost of risk 0.025 0.021  
Cost (excluding pres. 
value) 0.027 0.022  
    
Standard deviation 0.180 0.144  
Cost as % of standard dev -15.0% -15.3%  
    
Capital 0.463 0.463 With 0.5% risk of ruin 
Cost as % of capital -5.8% -4.8%  

 
 
Both risks have the same mean but the normal risk has a higher standard deviation.  Standard 
deviation, however, is not always a good measure of risk as it doesn’t pick up the addition 
skewness in the skewed risk.  Proportionally, the cost of standard deviation is marginally in 
the skewed risk. 
 
Both risks have the same mean and capital requirement using a 0.5% risk of ruin.  However, 
the normal risk has a much higher cost of capital as it has a much heavier downside tail.  This 
more than offset the additional upside under the normal risk. 
 
The key point is that the cost of risk is not necessarily a straight proportion of the capital.  The 
shape of the risk profile also has an impact.  This feature is often picked up in the value of 
financial risks but is often overlooked in the value for other risks. 
 
7.4 Log normal distributions and recovering the Black Scholes formula 
 
If Z is log normally distributed then the shift in the distribution may also lead to another 
lognormal distribution. 
 
Again, if mp = [ ]0.5λCλ pve +−  then for a log normal distribution 
 Real world Risk 

adjusted 
Comment 

Mean of ln(Z) α α - βλ Shifted by βλ 
Standard deviation of ln(Z) β β Unchanged 
 
A proof is given in the appendix.  This is akin to the Black Scholes formula.  The volatility 
assumption is maintained but the mean assumption is shifted downwards. 
 
7.5 Company valuations and the cost of non-financial risk 
   
Market consistent values are being used more often around the world for valuing financial 
services companies, but at present there is no agreed approach for including agency costs.  
Section 5.3 argued that one of the key drivers of agency costs is profit volatility from all risks.  
Stochastic discount factors could provide a generalised approach for quantifying the impact 
from total profit volatility. 
 
This can be achieved in a number of ways: 
1. Including a cost of risk based capital for non-financial risks.  In Section 7.3 we saw that 

the cost of capital is about 5.4% (under certain simple assumptions).  For non-financial 
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risks, we can deduct the cost of risk using a cost of the attributed risk based capital.  As 
mentioned above, this can only be used if the risk is normally distributed and the 
stochastic discount factors take a neat form. The risk based capital is not necessarily the 
same as the regulatory capital and should allow for the actual magnitude of the underlying 
risks, including any internal diversification. 

2. Alternatively, we could do a full stochastic projection and apply stochastic discount 
factors.  This approach can be used for all risks, including asymmetric risks, and for any 
shaped stochastic discount factor.   For example, operational risks are typically heavily 
skewed with a large likelihood of a small loss and a remote likelihood of a very large loss.  
Stochastic discount factors can derive a risk adjusted value for these risks. 

 
In practice, a company valuation could be expressed as: 
 $m 
Pure MCV value A 
Cost of non-financial risk (B) 
Net value C = A - B 
 
To facilitate a comparison between companies, there are ways for expressing the cost of non-
financial risk: 
• x% of risk based capital, where x% is derived as in the example is section 7.3 
• additional y% to the discount rate, where y% is routinely calibrated to give the desired 

total value 
• a more sophisticated approach could say that cost is based on a particular risk aversion 

function 
 
7.6 Enterprise risk management 
 
Stochastic discount factors are useful for enterprise risk management.  They can quantify all 
risks consistently and give a value to different risk management strategies. 
 
The advantages for ERM from using stochastic discount factors are: 
• all risks are valued 
• financial and non-financial risks are valued consistently 
• they can handle asymmetric profit profiles.  ERM is often concerned with limiting the 

downside while maintaining the upside.  Stochastic discount factors can handle this 
situation as they consider the full range of outcomes, but they give more weight to the 
downside. 

• diversification benefits can be directly computed (see the next section)  
• the unit cost of risk can be tracked over time by tracking the risk aversion implied in the 

shape of the stochastic discount rate curve 
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7.7 Diversification benefits 
 
Stochastic discount factors can quantify a diversification impact. 
 
Consider the two profit profiles from the start of Section 6.  The following graphs show the 
profit profile if these two profiles are combined.  This combined graph assumes the two risks 
are independent.   
 

Graph 7.1: Example of combining two risks 
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Profit (loss)
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Profit frequency: Combined
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The following table shows the value if these two profiles are combined.  The value is greater 
than the sum of the parts because the stochastic discount factors are reordered to reflect the 
new profit profile.  In the combined case, the highest stochastic discount factors are used 
when the combined profit is lowest, not when the profit from each individual risk is lowest. 
 

Table 7.3: Quantification of diversification benefits 
 Normal Skewed Diversification Combined Comment 

Best estimate profit 0.264 0.264 0.000 0.528 
(a) Mean of real world 
distribution 

PV at risk free rate 0.249 0.249 0.000 0.498 (b) = (a) / (1 + risk free rate) 
       
Risk adjusted mean 0.239 0.243 0.013 0.495 (c) Mean of risk neutral dist. 
PV at risk free rate 0.225 0.230 0.012 0.467 (d) = (c) / (1 + risk free rate) 
      
Cost of risk 0.025 0.021 -0.013 0.033 (e) = (a) - (c) 
PV of cost of risk 0.024 0.020 -0.013 0.031 (f) = (b) - (d) 
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This sort of combination may occur at a company level where the normal risk may be a 
product related risks such as mortality and the skewed risk may be a financial risk.  This sort 
of diversification is one of the key drivers of value for financial services companies. 
 
7.8 Risk adjusting historical returns 
 
Section 5 showed that stochastic discount factors can convert a future outcome to a risk 
adjusted expected value. 
 
Stochastic discount factors can also convert past observations into a risk adjusted measure.  
These factors give more weight to observations in low scenarios (for example when market 
returns were low, or if the company profit was low) and low factors in high scenarios.   
 
For an example, see the paper by Farnsworth et al (2000), Performance Evaluation Using 
Stochastic Discount Factors. 
 
7.9 Equivalent risk portfolios  
 
(This application is less straight forward then the previous ones and can be skipped.  It may be 
more of mathematical nicety than a genuine application.) 
 
Using the methodology in this paper, the value of any profit profile is the value of an 
“equivalent risk portfolio”. 
 
The equivalent risk portfolio is a combination of the risky market asset and a risk free asset, 
and has the same range of outcomes as the given risk. 
 
For a financial risk, the equivalent risk portfolio is the same as the replicating portfolio.  It 
provides the same outcomes in the same market conditions.  This is the principle underlying a 
market consistent valuation. 
 
For a non-financial risk, the equivalent risk portfolio provides the same range of outcomes 
with the same likelihood.  Importantly, however, the link with the market conditions is 
broken.  The non-financial risk and the equivalent risk portfolio provide the same outcomes, 
but not necessarily at the same time. 
 
In all cases, the cost of risk is directly related to the level of risky assets in the equivalent 
portfolio. 
 
This is not straight forward and a full explanation is beyond the scope of this paper.  (It 
basically works by recognising that a risk neutral distribution can be derived from options, 
and options are a mixture of risky and risk free assets.) 
 
As a high level example, the following table shows the composition of a portfolio that has the 
same risk profile as the normal and skewed example from Section 6, and the combined profile 
from Section 7.7. 
 

Table 7.4: Equivalent risk portfolios 
 Normally 

distributed profile 
Skewed profile Combined profile 

Equivalent  risk portfolio    
   Risky market asset 0.848 0.695 1.096 
   Risk free asset (0.623) (0.465) (0.629) 
Total value 0.225 0.230 0.467 
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This gives a way of explaining the riskiness of a particular profit profile.  For example, senior 
management may not readily understand the risk inherent in the skewed example.  However, 
they may understand “This has the same risk as taking $230 of your own money, borrowing 
$465 and buying $695 of shares.” 
 
Knowing this breakdown does not help with managing the risk.  Taking the skewed example, 
we can’t then sell $695 of shares to hedge the risk.   
 
The cost of risk is directly related to the equivalent market exposure.  Mathematically, the 
cost of risk is present value of the market risk premium times the equivalent exposure to the 
market asset.  This is shown in Table 7.5. 

 
Table 7.5: Deriving the cost of risk from the exposure of equivalent risk portfolio 

 
 Normally 

distributed profile 
Skewed profile Combined profile 

Market asset exposure of 
equivalent risk portfolio 0.848 0.695 1.096 

Market risk premium1

 3.00% 3.00% 3.00% 

Market exposure times the 
risk premium 0.025 0.021 0.033 

Present value 
(The result is the same as 
cost of risk) 

0.024 0.020 0.031 

 
Note 1: The market equity premium is the expected return on market asset (9% in this 

example) less the risk free rate (6%). 
 
As mentioned earlier, this may be more of a mathematical nicety than a genuine application.  
What it does show, however, is that value of any risk profile is the value of an equivalent risk 
portfolio.  The cost of risk is then the equivalent market exposure times the equity premium.  
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8 Limitations 

There are a number of limitations with the approach described in this paper.  Some are 
described below. 
 
8.1 A real world distribution 
 
The approach assumes that a real world distribution can be derived for company profit (or for 
what ever risk is being valued).  While this is an ideal goal, it is not always straight forward in 
practice. 
 
8.2 Agency costs 
 
There is nothing to say that the market risk aversion explains all of the difference between a 
pure MCV value and the market capitalisation of a company.  There may well be other costs 
that are not included in the models. 
 
The approach in this paper will help if the main driver of agency costs is profit volatility. 
 
8.3 Not arbitrage free 
 
The approach fails to meet one of the key requirements for a market consistent value as it is 
not arbitrage free for non-financial risks.   
 
The non-financial risks, by definition, cannot be hedged using market assets.  Therefore, 
knowing that the cost of non-financial risk doesn’t tell you how much you need to pay to 
avoid that risk.  To remove the risk could cost more or less than that and some costs may not 
be removable at all. 
 
In comparison, the cost of a financial risk has real meaning: it is the market cost for hedging 
that risk. 
 
8.4 Deriving the market’s view of the real world distribution 
 
The approach described in this paper assumes that you can find the market’s view for the real 
world distribution for the future level of the market.  This will not be a trivial exercise.  
Complex time series models can be developed but there is no guarantee that these will reflect 
the market’s views.  
 
8.5 Market and company risk aversion 
 
The approach assumes the company’s risk aversion is the same as the market risk.  There is, 
of course, no guarantee that this will hold.  At best, it serves as a benchmark. 
 
This is not necessarily a bad thing.  It is a way that a company can align its risk preferences 
with the market. 
 
8.6 Recovering the value of financial risks 
 
In practice, there will be more than one asset class and more than one market.  There is no 
guarantee that applying a single set of stochastic discount factors to the real world distribution 
for all financial assets will then produce the same value as using the risk neutral assumptions, 
particularly as the number of asset classes increases. 
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In this case, it is better to value financial risks using the risk neutral assumptions and then 
overlay the other risks, combined with stochastic discount factors, at the company level. 
 
8.7 Extension to multi-periods 
 
The approach described in this paper works for single periods.  For multi periods it is 
necessary to combine the individual periods together to reflect the correlation between years 
appropriately.  This is because, for example, the correlation for equity markets between two 
successive years is different to the correlation between years for other risks. 
 
To get around this limitation, the company profit should become the accumulated company 
profit at the end of the projection period.  The accumulation should be at the risk free rate.  
The stochastic discount factors should then relate to the implied risk aversion for a market 
asset at the end of the same projection period. 
 
In practice, it may be difficult to derive a long term view for either Q or P.  For example, 
there is unlikely to be sufficient information for long term options that are deep in or out of 
the money.   
 
8.8 Not good for extreme risks 
 
The approach may not work for extreme risks as it is unlikely we can derive a reliable 
measure of risk aversion at the edges of the market.  This could be a major limitation because 
many operational risks have low likelihoods but potentially high costs. 
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9 Conclusions 

The goal of this paper was to propose a general formula for valuing any set of uncertain future 
profits on a consistent basis.   
 
To meet this goal, there is a general formula for a future uncertain outcome Z with a real 
world distribution P(z), value = Σm.z.P(z) (or E(mZ)), where m is the stochastic discount 
factors derived from the value of financial assets. 
 
This formula meets the criteria outlined at the start of this paper because: 
• it produces a risk adjusted value; the higher the risk the lower the value (all other things 

being equal).  The formula gives more weight to the downside than to the upside, 
meaning the greater the spread of outcomes, especially on the downside, the lower the 
value 

• it  applies for all shapes of profit distributions 
• it is useful for enterprise risk management purposes as it looks at the impact on value 

from all sources of risk.   
• it values financial risks consistently with observable market values for similar risks, as it 

uses the market implied risk aversion as a key input 
• it can be explained in general terms, either as a cost of capital for simple risks or, for 

more complex cases, as a risk aversion function 
 
This paper came from a desire to include non-financial risk in a market consistent valuation.  
What emerged from it was a better understanding of what the cost of financial risk actually 
represents, and an idea for how this cost can have a wide range of applications. 
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The literature is the wide range of names for similar concepts, as shown in the table below. 
Real world distribution Risk neutral distribution Stochastic discount factors 
is similar to: 
Realistic distribution 
Subjective probability 
Implied probability 
Accurate probability 
Beliefs 
P - probability 
 

is similar to: 
Objective probability  
Distorted probability 
Pricing kernel 
State price density 
Q – probability 
 

is similar to: 
Risk distortion 
Risk transformation 
Pricing kernel 
Preferences 
Risk appetite 
Risk aversion 
Deflators 
State price deflators 
Marginal utility 
Marginal inter-temporal rate of 
substitution 
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Appendix 1: Deriving risk neutral distributions 
 
Market consistent values work by finding some factor “Q” that we can apply to different 
future profits, and then discount at the risk free rate.   The risk adjusted value is then the sum 
of all these across all possible cashflows. 
 
That is, they use some function Q(x) such that .  ∫= vQ(x)dxxZ V

 
For this to work, vQ(x)dx needs to be the value of an asset that pays 1 when the market is 
between x and x+dx and zero at all other times.   
 
A key advantage of this function Q(x) for valuing financial risks is that it can be readily 
derived using option prices.  
 
In 1978, Breeden and Litzenberger demonstrated that vQ is the second derivative of the 
option price to the strike price. 
 
To show this, consider the following portfolio using three options.   
• Buy 1 call option with a strike price of K-1  
• Sell 2 call options with a strike price of K 
• Buy 1 call option with a strike price of K+ 1 
 
Graph  A1.1 shows the pay off at different future levels of the market. 
 

Graph A1.1: Payout of options with K-1, K and K+1 strike prices 
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This portfolio pays 1 when the market value is K and zero at all other times, except for a 
triangle between K-1 and K+1.  This triangle can be minimised by using strike prices K-δx 
and K +δx and letting δx go to zero.  In this case, we need to buy 1/δx times the number of 
options.   
 
As δx tends to zero, the value of this portfolio must be vQ(x)dx, as it pays 1 when the market 
is at level K and zero at all other times. 
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Mathematically,  
 
Let C(K) be a call option with a strike price of K 
 
vQ(K)dx  = {C(K-dx ) – 2C(K) + C(K+dx) } /dx  
 = {C(K-dx ) – C(K)} /dx   - {C(K) – C(K+dx )} / dx  
 = -(first order change at K  - first order change at K-1) 
 
So vQ(K) = -(first order change at K  - first order change at K-1) / dx 
 = second order derivative of option price with respect to K 
 
This relationship doesn’t rely on any particular pricing formula for call options.  It works for 
Black Scholes or any other option pricing formula. 
 
To get a second derivative, the option price needs to be a smooth function of the strike price.  
This is unlikely to be the case in practice, and so some sort of formula will be required to keep 
things smooth.   
 
One approach is shown in the following set of graphs.  The numbers in these examples are for 
illustration only: 
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Step 3 
 
Fit a smooth curve to the volatility. 
 
Often, volatility increases with lower 
strike prices and decreases with 
higher strike prices, hence the curve 
is typically known as a “volatility 
smirk”.  (A volatility smile has 
increasing volatility for both lower 
and higher strike prices) 
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Step 4 
Get option prices using implied 
volatilities curve.  This requires 
putting the smoothed volatilities 
back into the option pricing formula 
 
Getting a smooth volatility smirk 
first and then getting a smooth 
option price is often easier than 
fitting a smooth curve to the option 
prices in the first instance 
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Step 5 
Get first derivative  
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Step 6 
Get second derivative 
 
= vQ(x) 
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Step 7 
 
Divide by v to the Q(x) 
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This is just one way of deriving Q.  Other ways include fitting parameters to a functional form 
for either the option price formula or for the actual Q(x) function. 
 
For detailed examples of this concept see Jackwerth (1997), Aït-Sahala and Lo (2000) and 
Chang and Tabak (2002). 
 
While Black Scholes assumes a log normal distribution for share prices, using the Breeden 
and Litzenberger approach does not necessarily lead to a log normal distribution for the risk 
neutral assumption.  If the volatility curve was flat using the Black Scholes formula, then 
Q(x) would be the same as a lognormal distribution.  If volatility increases for lower strike 
prices then the risk neutral distribution has fatter left hand tail than under a lognormal 
distribution.  The following graph compares the above graph, which has the volatility smirk, 
with a lognormal curve with a constant volatility. 
 

Graph A1-1: Curve with volatility smirk compared to curve with constant volatility. 
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Appendix 2: More on risk aversion 
 
A useful measure of utility is to look at the curvature of the marginal utility, rather than the 
absolute level.   
 
The most well known measures of this curvature of marginal utility were introduced by John 
Pratt (1964) and Kenneth Arrow (1965): absolute risk aversion and relative risk aversion. 
 

Absolute risk aversion (ARA):  
(x)U'
(x)'U'

−    

Relative risk aversion (RRA): 
(x)U'
(x)'U'

− x 

 
Arrow postulated that risk aversion should not necessarily be constant.  He suggested that 
individuals should demonstrate decreasing absolute risk aversion and increasing relative risk 
aversion. 
 
In simple terms, if all people have the same absolute risk aversion then all people will pay the 
same dollar amount to avoid the same dollar amount of risk.  If absolute risk aversion 
decreases as wealth increases, then a richer person would pay less to avoid the same dollar 
amount of risk.  This may make sense, as a wealthy person may be less sensitive to losing 
$1,000 than a poor person would be. 
 
In simple terms, if all people have the same relative risk aversion then all people will pay the 
same proportion of wealth to avoid the same relative amount of risk.  If relative risk aversion 
increases as wealth increases, then a richer person would pay more to avoid the same relative 
amount of risk.  This may make sense, as a wealthy person may be more sensitive to losing 
10% of their wealth than a poor person would be. 
 
The following table shows some common functions for utility and gives the absolute risk 
aversion and relative risk aversion.  The first three forms are quite common and have 
effectively been designed to give a meaningful risk aversion parameter. 
 

Table A2.1: Common utility functions and resulting risk aversion 
 

Function U(x) Absolute risk 
aversions 

Relative risk 
aversion 

Comments 

γxe
γ
1 −−    

γ  γx  Negative exponential  utility function 
Constant absolute risk aversion 

γ1x
γ1

1 −
−

   
x
γ  

γ  Power utility function 
Constant relative risk aversion 
Implied by Black Scholes option 
pricing model 

ln(x) 
x
1  

1 Special case of power utility but with 
γ = 1 

γ1) (x 
γ1

1 −+
−

η    
η x

γ
+

 

x
 1

γ
η

+
 

Relative risk aversion increases with 
increase in wealth 

2BxAx +  
2BxA

2B-
+

 
2BxA

2Bx-
+

 
Quadratic function 
B needs to be negative (but not too 
negative) to give a positive risk 
aversion 
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Deriving the market’s implied risk aversion 
 
It is possible to derive the market’s risk aversion by recognising that the stochastic discount 
factor is proportional to the marginal utility (see Jarvis et al for a proof). 
 

Since the stochastic discount factor equals v
P
Q and is proportional to the marginal utility, 

then (because v is a constant factor it drops out and after some simplifying maths) 
 

Absolute risk aversion (ARA) =  - (
Q
Q' - )

P
P'  

Relative risk aversion (RRA) = - (
Q
Q' - ).x

P
P'  

 
Therefore, if we can model market view for Q and P we can derive the market implied risk 
aversion. 
 
There is a large amount of literature on deriving risk aversion from option prices and models 
for future market returns.  See: 
• Aït-Sahalia and Lo, 2000, Non Parametric Risk Managements and Implied Risk 

Aversion 
• Jackwerth, 1997, Recovering Risk Aversion from Option Prices and Realised Returns 
• Ziegler, 2003, Why Does Risk Aversion Smile? 
 
Common features of these investigations are: 
• risk aversion is not flat and appears to “smile”.  That is, it increases for both high and 

low returns 
• the smile may be crooked at some points (that is, there may be a small bump around the 

middle) 
• risk aversion may even turn negative at the bottom of the smile 
 
A three-way relationship 
 
The following is an important relationship. 
 
If we know two of  

i. Risk aversion 
ii. Risk real world distribution (P) 

iii. Risk neutral distribution (Q) 
 
Then we can derive the third. 
 
 
Of these three, only one component is readily observable: the risk neutral distribution, as it 
can be derived form option prices.   
 
Q is not necessarily stable.  The question becomes, do these movements come from 
movements in risk aversion or from movements in P. 
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Economists and policy makers such as central bankers tend to view risk aversion as more 
stable.  If Q moves it is because P is moving.  They track the changes in option prices to give 
an idea of future market movements. 
 
Those with a statistical background may view P as stable and movements in Q arise from 
changes in risk aversions.  For example, the 2007 / 2008 sub prime crisis is the US increased 
risk aversion and decreased assets values in other markets, even through those other markets 
did not necessarily down grade their profit outlooks. 
 
In practice, it is likely to be a combination of both effects. 
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Appendix 3: Risk neutral probability in Black Scholes 
 
Back Scholes assumes that the underlying asset price follows a lognormal probability 
distribution. 
 
The standard Black Scholes formula for a European call option on a stock that pays no 
dividends is 
 
 
C = X.N(d1) – Ke-rtN(d2) 
 

d1 = 
t

tr
K
X t

σ

σ )
2

()ln(
2

++
 

d2 = td σ−1  
 

Where 
 
X = the current share price 
Xt = the share price after t years 
K = the strike price 
r = the risk free rate 
σ = the volatility of the share price returns 
t = the period to expiry 
 
 

 
If Xt is the share price at the end of time t and is lognormally distributed with parameters μ 
and σ (that is, ln(Xt) is normally distributed with mean μ and standard deviation σ).  
 
Under any risk neutral distribution, the present value of the expected value of a call option is 
PV(Max(Xt – K, 0))  
 
Hull (1997), Chapter 12A shows that if Xt is log normal then the present value of the expected 
value is  PV{E(Xt))N(d1) – K N(d2)} 
 
Where 
 

d1 = 
t

K
XE tt

σ

σ ))
)(

ln( 2
2

+
 

 

d2 = 
t

K
XE tt

σ

σ ))
)(

ln( 2
2

−
 

 

Substituting in for E(Xt) = X 2

2tt
e

σμ +
 

 

d1  = 
tσ

2
)

K
Xeln(

20.5 2
ttt σσμ

+
+

 

=  
tσ

2
σ

2
σμt  )

K
Xln(

22 tt
+++
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d2 =  
tσ

2
tσ

2
tσμt  )

K
Xln(

22

−++
  

 
Now, PV(E(Xt)) =   ttrt Xee

250 σμ .+−

 
We know that to be consistent with market value, PV(E(Xt) = X (the present vale of anything 
is the current value).  To get this, So r = μ + 0.5σ2 

 
Substituting in for r  
 

d1 = 
t

trt
K
X

σ

σ
2

)ln(
2

++
  

 

d2 = 
t

trt
K
X

σ

σ
2

)ln(
2

−+
 = tσd1−  

 
 
From the payout for an option: 
 
Present value of the expected value is  
 
= PV(Max(Xt – K, 0))  
 
= PV{E(Xt))N(d1) – K N(d2)} 
 
= XN(d1) – K e-rt N(d2) 
 
 
This is the same as the Black Scholes formula.   
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Appendix 4:  Proof of functional form of stochastic discount factor under log normal 
assumptions for risk neutral and real world distributions 
 

Lognormal pdf = 
2

2

2

2
1 σ

μ

πσ

))(ln( −
−

x

e
x

 

 

Real world pdf = 
2

2

2

2
1 σ

μ

πσ

))(ln( −
−

x

e
x

   ……. (1) 

 

Risk neutral pdf = 
2

2

2

2
1 σ

μ

πσ

*))(ln( −
−

x

e
x

……. (2) 

 
 

probality  worldReal
yprobabilit neutral Risk

 = 
2

2

2

2

2

2

2
1

2
1

σ
μ

σ
μ

πσ

πσ
))(ln(

*))(ln(

−
−

−
−

x

x

e
x

e
x       …….(3) = (2)/(1) 

 

P
Q = 

2

2

2

2

2

2

σ
μ

σ
μ

))(ln(

*))(ln(

−
−

−
−

x

x

e

e
     ……  cancel out first term 

 

= 2

22

2σ
μμ ))(ln(*))(ln( −−−

−
xx

e      ……because ym/yn = y(m-n) 

 

= 2

2222

2
))ln(2)(ln(*)(*)ln(2)(ln(

σ
μμμμ +−−+−

−
xxxx

e      …… expand out square terms 
 

= 2

2222

2
22

σ
μμμμ ))ln()ln(*)(*)ln()(ln( −+−+−

−
xxxx

e       ….  Multiple second brackets by -1 
 

= 2

22

2
)*)()*)(ln(2(

σ
μμμμ −+−−

−
x

e        ..   ln(x)2 cancel out and bring together 2ln(x) terms 
 

= 22
))*)(*()*)(ln(2(

σ
μμμμμμ +−+−−

−
x

e      …..  μ*2 - μ2 = (μ* - μ).(μ* + μ) 
 

= 22
2
σ

μμμμ ))*()ln()(*( ++−−
−

x

e     ..   pull out (μ* - μ) 
 

= 22
2

σ
μμμμ *))()ln(*)(( +−−

−
x

e   ……  multiple both brackets by -1, so (μ* - μ) becomes (μ - μ*) 
 
 

=
⎥⎦
⎤

⎢⎣
⎡ +−
⎥⎦
⎤

⎢⎣
⎡ −

−
σ

μμ
σ
μμ

2
2 *))()ln((*)( x

e       ….   Split out σ  
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=
⎥⎦
⎤

⎢⎣
⎡ +−
⎥⎦
⎤

⎢⎣
⎡ −

−
σ

μμ
σ
μμ *))*(.)(ln(*)( 50x

e     ….. (4)   divide second bracket by 2 
 
 
 
 
Now 
 

σ
μμλ *)( −

=        …… (5)   

So μ - μ* = λσ       ….. rearrange 
 
μ* = μ - λσ  ….. (6)    rearrange 
 
 
So  
μ + μ*  
= μ + μ - λσ       Insert (7) for μ* 
= 2μ - λσ   ……..(8) 
 
 
So 
 

=
⎥⎦
⎤

⎢⎣
⎡ +−
⎥⎦
⎤

⎢⎣
⎡ −

−
σ

μμ
σ
μμ *))*(.)(ln(*)( 50x

e         ……. From equation (4) 
 

=
[ ] ⎥⎦

⎤
⎢⎣
⎡ −−

−
σ

λσμλ ))*(.)(ln( 250x

e      Substitute the first term for λ and insert equation (8) for μ + μ*  
 
 

=
[ ] ⎥⎦

⎤
⎢⎣
⎡ +−

−
σ

λσμλ ))*.)(ln( 50x

e     ……. Expand the brackets.  
 

=
[ ] ⎥⎦

⎤
⎢⎣
⎡ +

−
−

σ
λσ

σ
μλ 50.))(ln( x

e        .     split out term 
 

=
[ ] ⎥⎦

⎤
⎢⎣

⎡ +
−

− λ
σ

μλ 50.))(ln( x

e        .      
 
So 
 

P
Q =

[ ] ⎥⎦

⎤
⎢⎣

⎡ +
−

− λ
σ

μλ 50.))(ln(x

e  

 
So  

v
P
Q =

[ ] ⎥
⎦

⎤
⎢
⎣

⎡ +
−

− λ
σ

μ
λ 50.))(ln(

v
x

e  
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Appendix 5: Proof of shift in normal and lognormal distributing under constant relative 
risk aversion 
 
Under constant relative risk aversion, the stochastic discount factor for a percentile p is  
 m(p) = [ ][ ]0.5λCλ pve +−  
 
If Z is normally distributed with mean α and standard deviation β, then the function for m.Z is 
 

[ ][ ]λλ 5.0+− Cpe   . 
2

2

2
)(

2
1 β

α

πβ

−
−

z

e  
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2
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β
αλ

β
α

πβ

zz

e   as Cp = 
β
α - z  corresponds to the standard normal variable 
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=  the pdf for a normal variable with mean α - λβ and standard deviation β  
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The proof for a log normal function is similar but 
β

α - ln(z)  corresponds to the standard 

normal variable with E(ln(Z)) = α and standard deviation(ln(Z)) = β 
 
The function for m.Z is 
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z

as Cp = 
β

α - ln(z)  is the standard normal variable 
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=  the pdf for a log normal variable with parameters α - λβ and β  
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